Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The role of regularization in classification of high-dimensional noisy Gaussian mixture (2002.11544v1)

Published 26 Feb 2020 in stat.ML, cond-mat.dis-nn, cs.LG, math.ST, and stat.TH

Abstract: We consider a high-dimensional mixture of two Gaussians in the noisy regime where even an oracle knowing the centers of the clusters misclassifies a small but finite fraction of the points. We provide a rigorous analysis of the generalization error of regularized convex classifiers, including ridge, hinge and logistic regression, in the high-dimensional limit where the number $n$ of samples and their dimension $d$ go to infinity while their ratio is fixed to $\alpha= n/d$. We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances. We also illustrate the interpolation peak at low regularization, and analyze the role of the respective sizes of the two clusters.

Citations (79)

Summary

We haven't generated a summary for this paper yet.