Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Gradient Quantization Condition for Communication-Efficient Distributed Training (2002.11082v1)

Published 25 Feb 2020 in cs.LG, cs.DC, and stat.ML

Abstract: The communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications. In particular, the growing size of deep learning models leads to higher communication overheads that defy the ideal linear training speedup regarding the number of devices. Gradient quantization is one of the common methods to reduce communication costs. However, it can lead to quantization error in the training and result in model performance degradation. In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for \textbf{ANY} gradient distribution. Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively, which dynamically determine the optimal quantization levels. Extensive experimental results on CIFAR and ImageNet datasets with several popular convolutional neural networks show the superiority of our proposed methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.