Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RR-DnCNN v2.0: Enhanced Restoration-Reconstruction Deep Neural Network for Down-Sampling Based Video Coding (2002.10739v2)

Published 25 Feb 2020 in eess.IV

Abstract: Integrating deep learning techniques into the video coding framework gains significant improvement compared to the standard compression techniques, especially applying super-resolution (up-sampling) to down-sampling based video coding as post-processing. However, besides up-sampling degradation, the various artifacts brought from compression make super-resolution problem more difficult to solve. The straightforward solution is to integrate the artifact removal techniques before super-resolution. However, some helpful features may be removed together, degrading the super-resolution performance. To address this problem, we proposed an end-to-end restoration-reconstruction deep neural network (RR-DnCNN) using the degradation-aware technique, which entirely solves degradation from compression and sub-sampling. Besides, we proved that the compression degradation produced by Random Access configuration is rich enough to cover other degradation types, such as Low Delay P and All Intra, for training. Since the straightforward network RR-DnCNN with many layers as a chain has poor learning capability suffering from the gradient vanishing problem, we redesign the network architecture to let reconstruction leverages the captured features from restoration using up-sampling skip connections. Our novel architecture is called restoration-reconstruction u-shaped deep neural network (RR-DnCNN v2.0). As a result, our RR-DnCNN v2.0 outperforms the previous works and can attain 17.02% BD-rate reduction on UHD resolution for all-intra anchored by the standard H.265/HEVC. The source code is available at https://minhmanho.github.io/rrdncnn/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Man M. Ho (7 papers)
  2. Jinjia Zhou (24 papers)
  3. Gang He (22 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.