Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Multi-Agent Inverse Reinforcement Learning via Actor-Attention-Critic (2002.10525v1)

Published 24 Feb 2020 in cs.MA and cs.LG

Abstract: Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems where we seek to recover both policies for our agents and reward functions that promote expert-like behavior. While MA-AIRL has promising results on cooperative and competitive tasks, it is sample-inefficient and has only been validated empirically for small numbers of agents -- its ability to scale to many agents remains an open question. We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works. Specifically, we employ multi-agent actor-attention-critic (MAAC) -- an off-policy multi-agent RL (MARL) method -- for the RL inner loop of the inverse RL procedure. In doing so, we are able to increase sample efficiency compared to state-of-the-art baselines, across both small- and large-scale tasks. Moreover, the RL agents trained on the rewards recovered by our method better match the experts than those trained on the rewards derived from the baselines. Finally, our method requires far fewer agent-environment interactions, particularly as the number of agents increases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wonseok Jeon (14 papers)
  2. Paul Barde (6 papers)
  3. Derek Nowrouzezahrai (40 papers)
  4. Joelle Pineau (123 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.