Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting rare benthic macroinvertebrates taxa identification with one-class classification (2002.10420v1)

Published 12 Feb 2020 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: Insect monitoring is crucial for understanding the consequences of rapid ecological changes, but taxa identification currently requires tedious manual expert work and cannot be scaled-up efficiently. Deep convolutional neural networks (CNNs), provide a viable way to significantly increase the biomonitoring volumes. However, taxa abundances are typically very imbalanced and the amounts of training images for the rarest classes are simply too low for deep CNNs. As a result, the samples from the rare classes are often completely missed, while detecting them has biological importance. In this paper, we propose combining the trained deep CNN with one-class classifiers to improve the rare species identification. One-class classification models are traditionally trained with much fewer samples and they can provide a mechanism to indicate samples potentially belonging to the rare classes for human inspection. Our experiments confirm that the proposed approach may indeed support moving towards partial automation of the taxa identification task.

Citations (14)

Summary

We haven't generated a summary for this paper yet.