Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On existence of quasi-Strebel structures for meromorphic k-differentials (2002.10280v1)

Published 24 Feb 2020 in math.AG and math.GT

Abstract: In this paper, motivated by the classical notion of a Strebel quadratic differential on a compact Riemann surfaces without boundary we introduce the notion of a quasi-Strebel structure for a meromorphic differential of an arbitrary order. It turns out that every differential of even order k exceeding 2 satisfying certain natural conditions at its singular points admits such a structure. The case of differentials of odd order is quite different and our existence result involves some arithmetic conditions. We discuss the set of quasi-Stebel structures associated to a given differential and introduce the subclass of positive k-differentials. Finally, we provide a family of examples of positive rational differentials and explain their connection with the classical Heine-Stieltjes theory of linear differential equations with polynomial coefficients.

Summary

We haven't generated a summary for this paper yet.