Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Goodness of Fit of Conditional Density Models with Kernels (2002.10271v2)

Published 24 Feb 2020 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We propose two nonparametric statistical tests of goodness of fit for conditional distributions: given a conditional probability density function $p(y|x)$ and a joint sample, decide whether the sample is drawn from $p(y|x)r_x(x)$ for some density $r_x$. Our tests, formulated with a Stein operator, can be applied to any differentiable conditional density model, and require no knowledge of the normalizing constant. We show that 1) our tests are consistent against any fixed alternative conditional model; 2) the statistics can be estimated easily, requiring no density estimation as an intermediate step; and 3) our second test offers an interpretable test result providing insight on where the conditional model does not fit well in the domain of the covariate. We demonstrate the interpretability of our test on a task of modeling the distribution of New York City's taxi drop-off location given a pick-up point. To our knowledge, our work is the first to propose such conditional goodness-of-fit tests that simultaneously have all these desirable properties.

Citations (26)

Summary

We haven't generated a summary for this paper yet.