Papers
Topics
Authors
Recent
Search
2000 character limit reached

Infinite-dimensional regularization of McKean-Vlasov equation with a Wasserstein diffusion

Published 24 Feb 2020 in math.PR | (2002.10157v1)

Abstract: Much effort has been spent in recent years on restoring uniqueness of McKean-Vlasov SDEs with non-smooth coefficients. As a typical instance, the velocity field is assumed to be bounded and measurable in its space variable and Lipschitz-continuous with respect to the distance in total variation in its measure variable, see [Jourdain, Mishura-Veretennikov]. In contrast with those works, we consider in this paper a Fokker-Planck equation driven by an infinite-dimensional noise, inspired by the diffusion models on the Wasserstein space studied in [Konarovskyi, Marx]. We prove that well-posedness of that equation holds for a drift function that might be only bounded and measurable in its measure argument, provided that a trade-off is respected between the regularity in the finite-dimensional component and the regularity in the measure argument. In this regard, we show that the higher the regularity of b with respect to its space variable is, the lower regularity we have to assume on b with respect to its measure variable in order to restore uniqueness.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.