Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic Querying of Vector Spaces: Probabilistic Databases Meets Relational Embeddings (2002.10029v2)

Published 24 Feb 2020 in cs.AI and cs.DB

Abstract: We propose unifying techniques from probabilistic databases and relational embedding models with the goal of performing complex queries on incomplete and uncertain data. We formalize a probabilistic database model with respect to which all queries are done. This allows us to leverage the rich literature of theory and algorithms from probabilistic databases for solving problems. While this formalization can be used with any relational embedding model, the lack of a well-defined joint probability distribution causes simple query problems to become provably hard. With this in mind, we introduce \TO, a relational embedding model designed to be a tractable probabilistic database, by exploiting typical embedding assumptions within the probabilistic framework. Using a principled, efficient inference algorithm that can be derived from its definition, we empirically demonstrate that \TOs is an effective and general model for these querying tasks.

Citations (21)

Summary

We haven't generated a summary for this paper yet.