Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Spatial-Temporal Multi-Frequency Analysis for High-Fidelity and Temporal-Consistency Video Prediction (2002.09905v2)

Published 23 Feb 2020 in cs.CV

Abstract: Video prediction is a pixel-wise dense prediction task to infer future frames based on past frames. Missing appearance details and motion blur are still two major problems for current predictive models, which lead to image distortion and temporal inconsistency. In this paper, we point out the necessity of exploring multi-frequency analysis to deal with the two problems. Inspired by the frequency band decomposition characteristic of Human Vision System (HVS), we propose a video prediction network based on multi-level wavelet analysis to deal with spatial and temporal information in a unified manner. Specifically, the multi-level spatial discrete wavelet transform decomposes each video frame into anisotropic sub-bands with multiple frequencies, helping to enrich structural information and reserve fine details. On the other hand, multi-level temporal discrete wavelet transform which operates on time axis decomposes the frame sequence into sub-band groups of different frequencies to accurately capture multi-frequency motions under a fixed frame rate. Extensive experiments on diverse datasets demonstrate that our model shows significant improvements on fidelity and temporal consistency over state-of-the-art works.

Citations (90)

Summary

We haven't generated a summary for this paper yet.