Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic Q-Learning (2002.09795v1)

Published 23 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: The use of target networks is a common practice in deep reinforcement learning for stabilizing the training; however, theoretical understanding of this technique is still limited. In this paper, we study the so-called periodic Q-learning algorithm (PQ-learning for short), which resembles the technique used in deep Q-learning for solving infinite-horizon discounted Markov decision processes (DMDP) in the tabular setting. PQ-learning maintains two separate Q-value estimates - the online estimate and target estimate. The online estimate follows the standard Q-learning update, while the target estimate is updated periodically. In contrast to the standard Q-learning, PQ-learning enjoys a simple finite time analysis and achieves better sample complexity for finding an epsilon-optimal policy. Our result provides a preliminary justification of the effectiveness of utilizing target estimates or networks in Q-learning algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Donghwan Lee (60 papers)
  2. Niao He (91 papers)
Citations (12)