Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Tensor Methods with Dynamic Accuracies (2002.09403v2)

Published 21 Feb 2020 in math.OC

Abstract: In this paper, we study inexact high-order Tensor Methods for solving convex optimization problems with composite objective. At every step of such methods, we use approximate solution of the auxiliary problem, defined by the bound for the residual in function value. We propose two dynamic strategies for choosing the inner accuracy: the first one is decreasing as $1/k{p + 1}$, where $p \geq 1$ is the order of the method and $k$ is the iteration counter, and the second approach is using for the inner accuracy the last progress in the target objective. We show that inexact Tensor Methods with these strategies achieve the same global convergence rate as in the error-free case. For the second approach we also establish local superlinear rates (for $p \geq 2$), and propose the accelerated scheme. Lastly, we present computational results on a variety of machine learning problems for several methods and different accuracy policies.

Citations (19)

Summary

We haven't generated a summary for this paper yet.