Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Resolution Adversarial Dual Network for Person Re-Identification and Beyond (2002.09274v2)

Published 19 Feb 2020 in cs.CV

Abstract: Person re-identification (re-ID) aims at matching images of the same person across camera views. Due to varying distances between cameras and persons of interest, resolution mismatch can be expected, which would degrade re-ID performance in real-world scenarios. To overcome this problem, we propose a novel generative adversarial network to address cross-resolution person re-ID, allowing query images with varying resolutions. By advancing adversarial learning techniques, our proposed model learns resolution-invariant image representations while being able to recover the missing details in low-resolution input images. The resulting features can be jointly applied for improving re-ID performance due to preserving resolution invariance and recovering re-ID oriented discriminative details. Extensive experimental results on five standard person re-ID benchmarks confirm the effectiveness of our method and the superiority over the state-of-the-art approaches, especially when the input resolutions are not seen during training. Furthermore, the experimental results on two vehicle re-ID benchmarks also confirm the generalization of our model on cross-resolution visual tasks. The extensions of semi-supervised settings further support the use of our proposed approach to real-world scenarios and applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yu-Jhe Li (23 papers)
  2. Yun-Chun Chen (17 papers)
  3. Yen-Yu Lin (38 papers)
  4. Yu-Chiang Frank Wang (88 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.