Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Conditional Independence in Max-linear Bayesian Networks (2002.09233v2)

Published 21 Feb 2020 in math.ST, math.PR, and stat.TH

Abstract: Motivated by extreme value theory, max-linear Bayesian networks have been recently introduced and studied as an alternative to linear structural equation models. However, for max-linear systems the classical independence results for Bayesian networks are far from exhausting valid conditional independence statements. We use tropical linear algebra to derive a compact representation of the conditional distribution given a partial observation, and exploit this to obtain a complete description of all conditional independence relations. In the context-specific case, where conditional independence is queried relative to a specific value of the conditioning variables, we introduce the notion of a source DAG to disclose the valid conditional independence relations. In the context-free case we characterize conditional independence through a modified separation concept, $\ast$-separation, combined with a tropical eigenvalue condition. We also introduce the notion of an impact graph which describes how extreme events spread deterministically through the network and we give a complete characterization of such impact graphs. Our analysis opens up several interesting questions concerning conditional independence and tropical geometry.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.