Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divisibility results concerning truncated hypergeometric series (2002.08814v2)

Published 20 Feb 2020 in math.NT and math.CO

Abstract: In this paper, using the well-known Karlsson-Minton formula, we mainly establish two divisibility results concerning truncated hypergeometric series. Let $n>2$ and $q>0$ be integers with $2\mid n$ or $2\nmid q$. We show that $$\sum_{k=0}{p-1}\frac{(q-\frac{p}{n})_kn}{(1)_kn}\equiv0\pmod{p3} $$ and $$pn\sum_{k=0}{p-1}\frac{(1)_kn}{(\frac{p}{n}-q+2)_kn}\equiv0\pmod{p3}$$ for any prime $p>\max{n,(q-1)n+1}$, where $(x)k$ denotes the Pochhammer symbol defined by $$ (x)_k=\begin{cases}1,\quad &k=0,\ x(x+1)\cdots(x+k-1),\quad &k>0.\end{cases}$$ Let $n\geq4$ be an even integer. Then for any prime $p$ with $p\equiv-1\pmod{n}$, the first congruence above implies that $$\sum{k=0}{p-1} \frac{(\frac{1}{n})_kn}{(1)_kn}\equiv0\pmod{p3}. $$ This confirms a recent conjecture of Guo.

Summary

We haven't generated a summary for this paper yet.