Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms and Lower Bounds for de Morgan Formulas of Low-Communication Leaf Gates (2002.08533v1)

Published 20 Feb 2020 in cs.CC

Abstract: The class $FORMULA[s] \circ \mathcal{G}$ consists of Boolean functions computable by size-$s$ de Morgan formulas whose leaves are any Boolean functions from a class $\mathcal{G}$. We give lower bounds and (SAT, Learning, and PRG) algorithms for $FORMULA[n{1.99}]\circ \mathcal{G}$, for classes $\mathcal{G}$ of functions with low communication complexity. Let $R{(k)}(\mathcal{G})$ be the maximum $k$-party NOF randomized communication complexity of $\mathcal{G}$. We show: (1) The Generalized Inner Product function $GIPk_n$ cannot be computed in $FORMULA[s]\circ \mathcal{G}$ on more than $1/2+\varepsilon$ fraction of inputs for $$ s = o ! \left ( \frac{n2}{ \left(k \cdot 4k \cdot {R}{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right){2}} \right).$$ As a corollary, we get an average-case lower bound for $GIPk_n$ against $FORMULA[n{1.99}]\circ PTF{k-1}$. (2) There is a PRG of seed length $n/2 + O\left(\sqrt{s} \cdot R{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right)$ that $\varepsilon$-fools $FORMULA[s] \circ \mathcal{G}$. For $FORMULA[s] \circ LTF$, we get the better seed length $O\left(n{1/2}\cdot s{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right)$. This gives the first non-trivial PRG (with seed length $o(n)$) for intersections of $n$ half-spaces in the regime where $\varepsilon \leq 1/n$. (3) There is a randomized $2{n-t}$-time $#$SAT algorithm for $FORMULA[s] \circ \mathcal{G}$, where $$t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log2(s)\cdot R{(2)}(\mathcal{G})}\right){1/2}.$$ In particular, this implies a nontrivial #SAT algorithm for $FORMULA[n{1.99}]\circ LTF$. (4) The Minimum Circuit Size Problem is not in $FORMULA[n{1.99}]\circ XOR$. On the algorithmic side, we show that $FORMULA[n{1.99}] \circ XOR$ can be PAC-learned in time $2{O(n/\log n)}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Valentine Kabanets (1 paper)
  2. Sajin Koroth (9 papers)
  3. Zhenjian Lu (7 papers)
  4. Dimitrios Myrisiotis (8 papers)
  5. Igor Oliveira (4 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.