Algorithms and Lower Bounds for de Morgan Formulas of Low-Communication Leaf Gates (2002.08533v1)
Abstract: The class $FORMULA[s] \circ \mathcal{G}$ consists of Boolean functions computable by size-$s$ de Morgan formulas whose leaves are any Boolean functions from a class $\mathcal{G}$. We give lower bounds and (SAT, Learning, and PRG) algorithms for $FORMULA[n{1.99}]\circ \mathcal{G}$, for classes $\mathcal{G}$ of functions with low communication complexity. Let $R{(k)}(\mathcal{G})$ be the maximum $k$-party NOF randomized communication complexity of $\mathcal{G}$. We show: (1) The Generalized Inner Product function $GIPk_n$ cannot be computed in $FORMULA[s]\circ \mathcal{G}$ on more than $1/2+\varepsilon$ fraction of inputs for $$ s = o ! \left ( \frac{n2}{ \left(k \cdot 4k \cdot {R}{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right){2}} \right).$$ As a corollary, we get an average-case lower bound for $GIPk_n$ against $FORMULA[n{1.99}]\circ PTF{k-1}$. (2) There is a PRG of seed length $n/2 + O\left(\sqrt{s} \cdot R{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right)$ that $\varepsilon$-fools $FORMULA[s] \circ \mathcal{G}$. For $FORMULA[s] \circ LTF$, we get the better seed length $O\left(n{1/2}\cdot s{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right)$. This gives the first non-trivial PRG (with seed length $o(n)$) for intersections of $n$ half-spaces in the regime where $\varepsilon \leq 1/n$. (3) There is a randomized $2{n-t}$-time $#$SAT algorithm for $FORMULA[s] \circ \mathcal{G}$, where $$t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log2(s)\cdot R{(2)}(\mathcal{G})}\right){1/2}.$$ In particular, this implies a nontrivial #SAT algorithm for $FORMULA[n{1.99}]\circ LTF$. (4) The Minimum Circuit Size Problem is not in $FORMULA[n{1.99}]\circ XOR$. On the algorithmic side, we show that $FORMULA[n{1.99}] \circ XOR$ can be PAC-learned in time $2{O(n/\log n)}$.
- Valentine Kabanets (1 paper)
- Sajin Koroth (9 papers)
- Zhenjian Lu (7 papers)
- Dimitrios Myrisiotis (8 papers)
- Igor Oliveira (4 papers)