Papers
Topics
Authors
Recent
2000 character limit reached

A fitted finite volume method for stochastic optimal control Problems

Published 19 Feb 2020 in math.NA, cs.NA, and math.AP | (2002.08464v1)

Abstract: In this article, we provide a numerical method based on fitted finite volume method to approximate the Hamilton-Jacobi-Bellman (HJB) equation coming from stochastic optimal control problems. The computational challenge is due to the nature of the HJB equation, which may be a second-order degenerated partial differential equation coupled with optimization. In the work, we discretize the HJB equation using the fitted finite volume method and show that matrix resulting from spatial discretization is an M-matrix. The optimization problem is solved at every time step using iterative method. Numerical results are presented to show the robustness of the fitted finite volume numerical method comparing to the standard finite difference method.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.