Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Inversion Using Sparsity and Total Variation Prior And Monte Carlo Sampling Method For Diffuse Optical Tomography (2002.08038v1)

Published 19 Feb 2020 in math.NA, cs.NA, and eess.IV

Abstract: In this paper, we formulate the reconstruction problem in diffuse optical tomography (DOT) in a statistical setting for determining the optical parameters, scattering and absorption, from boundary photon density measurements. A special kind of adaptive Metropolis algorithm for the reconstruction procedure using sparsity and total variation prior is presented. Finally, a simulation study of this technique with different regularization functions and its comparison to the deterministic Iteratively Regularized Gauss Newton method shows the effectiveness and stability of the method.

Summary

We haven't generated a summary for this paper yet.