Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks (2002.08012v1)

Published 19 Feb 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Graph convolutional neural networks, which learn aggregations over neighbor nodes, have achieved great performance in node classification tasks. However, recent studies reported that such graph convolutional node classifier can be deceived by adversarial perturbations on graphs. Abusing graph convolutions, a node's classification result can be influenced by poisoning its neighbors. Given an attributed graph and a node classifier, how can we evaluate robustness against such indirect adversarial attacks? Can we generate strong adversarial perturbations which are effective on not only one-hop neighbors, but more far from the target? In this paper, we demonstrate that the node classifier can be deceived with high-confidence by poisoning just a single node even two-hops or more far from the target. Towards achieving the attack, we propose a new approach which searches smaller perturbations on just a single node far from the target. In our experiments, our proposed method shows 99% attack success rate within two-hops from the target in two datasets. We also demonstrate that m-layer graph convolutional neural networks have chance to be deceived by our indirect attack within m-hop neighbors. The proposed attack can be used as a benchmark in future defense attempts to develop graph convolutional neural networks with having adversary robustness.

Citations (35)

Summary

We haven't generated a summary for this paper yet.