Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best-item Learning in Random Utility Models with Subset Choices (2002.07994v1)

Published 19 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: We consider the problem of PAC learning the most valuable item from a pool of $n$ items using sequential, adaptively chosen plays of subsets of $k$ items, when, upon playing a subset, the learner receives relative feedback sampled according to a general Random Utility Model (RUM) with independent noise perturbations to the latent item utilities. We identify a new property of such a RUM, termed the minimum advantage, that helps in characterizing the complexity of separating pairs of items based on their relative win/loss empirical counts, and can be bounded as a function of the noise distribution alone. We give a learning algorithm for general RUMs, based on pairwise relative counts of items and hierarchical elimination, along with a new PAC sample complexity guarantee of $O(\frac{n}{c2\epsilon2} \log \frac{k}{\delta})$ rounds to identify an $\epsilon$-optimal item with confidence $1-\delta$, when the worst case pairwise advantage in the RUM has sensitivity at least $c$ to the parameter gaps of items. Fundamental lower bounds on PAC sample complexity show that this is near-optimal in terms of its dependence on $n,k$ and $c$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.