Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis (2002.07487v2)

Published 18 Feb 2020 in eess.IV and cs.CV

Abstract: Fully supervised deep-learning based denoisers are currently the most performing image denoising solutions. However, they require clean reference images. When the target noise is complex, e.g. composed of an unknown mixture of primary noises with unknown intensity, fully supervised solutions are limited by the difficulty to build a suited training set for the problem. This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser. The method is shown to keep up with state of the art blind denoisers on mixture noises. Moreover, noise analysis is demonstrated to guide denoisers efficiently not only on noise type, but also on noise intensity. The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature. This feature makes the method adaptive to varied denoising cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Florian Lemarchand (4 papers)
  2. Erwan Nogues (4 papers)
  3. Maxime Pelcat (16 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.