Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating processes in adapted Wasserstein distance (2002.07261v2)

Published 17 Feb 2020 in math.PR, math.ST, and stat.TH

Abstract: A number of researchers have independently introduced topologies on the set of laws of stochastic processes that extend the usual weak topology. Depending on the respective scientific background this was motivated by applications and connections to various areas (e.g. Plug-Pichler - stochastic programming, Hellwig - game theory, Aldous - stability of optimal stopping, Hoover-Keisler - model theory). Remarkably, all these seemingly independent approaches define the same adapted weak topology in finite discrete time. Our first main result is to construct an adapted variant of the empirical measure that consistently estimates the laws of stochastic processes in full generality. A natural compatible metric for the weak adapted topology is the given by an adapted refinement of the Wasserstein distance, as established in the seminal works of Pflug-Pichler. Specifically, the adapted Wasserstein distance allows to control the error in stochastic optimization problems, pricing and hedging problems, optimal stopping problems, etc. in a Lipschitz fashion. The second main result of this article yields quantitative bounds for the convergence of the adapted empirical measure with respect to adapted Wasserstein distance. Surprisingly, we obtain virtually the same optimal rates and concentration results that are known for the classical empirical measure wrt. Wasserstein distance.

Summary

We haven't generated a summary for this paper yet.