Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularizing Semi-supervised Graph Convolutional Networks with a Manifold Smoothness Loss (2002.07031v1)

Published 11 Feb 2020 in cs.LG and stat.ML

Abstract: Existing graph convolutional networks focus on the neighborhood aggregation scheme. When applied to semi-supervised learning, they often suffer from the overfitting problem as the networks are trained with the cross-entropy loss on a small potion of labeled data. In this paper, we propose an unsupervised manifold smoothness loss defined with respect to the graph structure, which can be added to the loss function as a regularization. We draw connections between the proposed loss with an iterative diffusion process, and show that minimizing the loss is equivalent to aggregate neighbor predictions with infinite layers. We conduct experiments on multi-layer perceptron and existing graph networks, and demonstrate that adding the proposed loss can improve the performance consistently.

Summary

We haven't generated a summary for this paper yet.