2000 character limit reached
Strongly graded Leavitt path algebras (2002.06965v3)
Published 17 Feb 2020 in math.RA and math.OA
Abstract: Let $R$ be a unital ring, let $E$ be a directed graph and recall that the Leavitt path algebra $L_R(E)$ carries a natural $\mathbb{Z}$-gradation. We show that $L_R(E)$ is strongly $\mathbb{Z}$-graded if and only if $E$ is row-finite, has no sink, and satisfies Condition (Y). Our result generalizes a recent result by Clark, Hazrat and Rigby, and the proof is short and self-contained.