Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive local minimax Galerkin methods for variational problems (2002.06915v2)

Published 17 Feb 2020 in math.NA and cs.NA

Abstract: In many applications of practical interest, solutions of partial differential equation models arise as critical points of an underlying (energy) functional. If such solutions are saddle points, rather than being maxima or minima, then the theoretical framework is non-standard, and the development of suitable numerical approximation procedures turns out to be highly challenging. In this paper, our aim is to present an iterative discretization methodology for the numerical solution of nonlinear variational problems with multiple (saddle point) solutions. In contrast to traditional numerical approximation schemes, which typically fail in such situations, the key idea of the current work is to employ a simultaneous interplay of a previously developed local minimax approach and adaptive Galerkin discretizations. We thereby derive an adaptive local minimax Galerkin (LMMG) method, which combines the search for saddle point solutions and their approximation in finite-dimensional spaces in a highly effective way. Under certain assumptions, we will prove that the generated sequence of approximate solutions converges to the solution set of the variational problem. This general framework will be applied to the specific context of finite element discretizations of (singularly perturbed) semilinear elliptic boundary value problems, and a series of numerical experiments will be presented.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pascal Heid (16 papers)
  2. Thomas P. Wihler (31 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.