Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid Prediction of Earthquake Ground Shaking Intensity Using Raw Waveform Data and a Convolutional Neural Network (2002.06893v2)

Published 17 Feb 2020 in physics.geo-ph

Abstract: This study describes a deep convolutional neural network (CNN) based technique for the prediction of intensity measurements (IMs) of ground shaking. The input data to the CNN model consists of multistation 3C broadband and accelerometric waveforms recorded during the 2016 Central Italy earthquake sequence for M $\ge$ 3.0. We find that the CNN is capable of predicting accurately the IMs at stations far from the epicenter and that have not yet recorded the maximum ground shaking when using a 10 s window starting at the earthquake origin time. The CNN IM predictions do not require previous knowledge of the earthquake source (location and magnitude). Comparison between the CNN model predictions and the predictions obtained with Bindi et al. (2011) GMPE (which require location and magnitude) has shown that the CNN model features similar error variance but smaller bias. Although the technique is not strictly designed for earthquake early warning, we found that it can provide useful estimates of ground motions within 15-20 sec after earthquake origin time depending on various setup elements (e.g., times for data transmission, computation, latencies). The technique has been tested on raw data without any initial data pre-selection in order to closely replicate real-time data streaming. When noise examples were included with the earthquake data, the CNN was found to be stable predicting accurately the ground shaking intensity corresponding to the noise amplitude.

Summary

We haven't generated a summary for this paper yet.