Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Last iterate convergence in no-regret learning: constrained min-max optimization for convex-concave landscapes (2002.06768v2)

Published 17 Feb 2020 in cs.LG, cs.GT, and stat.ML

Abstract: In a recent series of papers it has been established that variants of Gradient Descent/Ascent and Mirror Descent exhibit last iterate convergence in convex-concave zero-sum games. Specifically, \cite{DISZ17, LiangS18} show last iterate convergence of the so called "Optimistic Gradient Descent/Ascent" for the case of \textit{unconstrained} min-max optimization. Moreover, in \cite{Metal} the authors show that Mirror Descent with an extra gradient step displays last iterate convergence for convex-concave problems (both constrained and unconstrained), though their algorithm does not follow the online learning framework; it uses extra information rather than \textit{only} the history to compute the next iteration. In this work, we show that "Optimistic Multiplicative-Weights Update (OMWU)" which follows the no-regret online learning framework, exhibits last iterate convergence locally for convex-concave games, generalizing the results of \cite{DP19} where last iterate convergence of OMWU was shown only for the \textit{bilinear case}. We complement our results with experiments that indicate fast convergence of the method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Qi Lei (55 papers)
  2. Sai Ganesh Nagarajan (10 papers)
  3. Ioannis Panageas (44 papers)
  4. Xiao Wang (507 papers)
Citations (43)