Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint (2002.06746v4)

Published 17 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Machine learning is used to make decisions for individuals in various fields, which require us to achieve good prediction accuracy while ensuring fairness with respect to sensitive features (e.g., race and gender). This problem, however, remains difficult in complex real-world scenarios. To quantify unfairness under such situations, existing methods utilize {\it path-specific causal effects}. However, none of them can ensure fairness for each individual without making impractical functional assumptions on the data. In this paper, we propose a far more practical framework for learning an individually fair classifier. To avoid restrictive functional assumptions, we define the {\it probability of individual unfairness} (PIU) and solve an optimization problem where PIU's upper bound, which can be estimated from data, is controlled to be close to zero. We elucidate why our method can guarantee fairness for each individual. Experimental results show that our method can learn an individually fair classifier at a slight cost of accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yoichi Chikahara (5 papers)
  2. Shinsaku Sakaue (25 papers)
  3. Akinori Fujino (6 papers)
  4. Hisashi Kashima (63 papers)