Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Citation Trajectories of Scientific Papers (2002.06628v2)

Published 16 Feb 2020 in cs.SI and physics.soc-ph

Abstract: Several network growth models have been proposed in the literature that attempt to incorporate properties of citation networks. Generally, these models aim at retaining the degree distribution observed in real-world networks. In this work, we explore whether existing network growth models can realize the diversity in citation growth exhibited by individual papers - a new node-centric property observed recently in citation networks across multiple domains of research. We theoretically and empirically show that the network growth models which are solely based on degree and/or intrinsic fitness cannot realize certain temporal growth behaviors that are observed in real-world citation networks. To this end, we propose two new growth models that localize the influence of papers through an appropriate attachment mechanism. Experimental results on the real-world citation networks of Computer Science and Physics domains show that our proposed models can better explain the temporal behavior of citation networks than existing models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.