Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expanding total sieve and patterns in primes (2002.06523v3)

Published 16 Feb 2020 in math.GM

Abstract: Let $\big(\mathcal{S}n{\alpha,\kappa,\mathfrak{r}}(z)\big){n=1}\infty$ be a sequence of the largest possible integer intervals, such that $z\in\mathcal{S}n{\alpha,\kappa,\mathfrak{r}}(z)\subset\overline{\mathcal{M}}_n{\alpha,\kappa,\mathfrak{r}}=\bigcup{i=1}n [\mathfrak{r}i]{\mathfrak{p}i}$ or $\mathcal{S}_n{\alpha,\kappa,\mathfrak{r}}(z)=\emptyset$, where $\mathfrak{p}_i=p{\alpha+\left\lceil i/\kappa\right\rceil-1}$ and $z\in\mathbb{Z}$. We prove that $\big(#\mathcal{S}n{\alpha,\kappa,\mathfrak{r}}(z)\big){n=1}\infty$ oscillates infinitely many times around $\beta_n!=!o\left(n2\right)$ for any fixed $\alpha\in\mathbb{Z}+$, $\kappa\in\mathbb{Z}\cap[1,p_\alpha)$, and $\mathfrak{r}i\in\mathbb{Z}$. Let $T=(a_1,a_2,\ldots,a_k)$ be an admissible $k$-tuple and let $\mathcal{X}_n{T,k,\rho,\eta}=\left{x\in[\rho]\eta\,:\,{x!+!a_1,x!+!a_2,\ldots,x!+!a_k}\cap\mathcal{M}{n+\alpha-1}\neq\emptyset\right}$ for each $n\in\mathbb{Z}+$, where $\mathcal{M}_g=\bigcup{i=1}g [0]{p_i}$. We prove that for any $T$ and for some fixed $\alpha$, $\kappa$, $\rho$, $\eta$, $z$, and $\mathfrak{r}$, there exists a linear bijection between $\overline{\mathcal{M}}{\kappa n}{\alpha,\kappa,\mathfrak{r}}$ and $\mathcal{X}n{T,k,\rho,\eta}$ for each $n\in\mathbb{Z}+$. It implies that the length of any expanding integer interval on which all occurrences of $T$ are sieved out by $\mathcal{M}{n+\alpha-1}$ oscillates infinitely many times around $\widetilde{\beta}n=o\left(n2\right)$. The concept of the sieve of Eratosthenes asserts $\mathcal{E}_n=[2,p2{n+\alpha})\cap\left(\mathbb{Z}\setminus\mathcal{M}{n+\alpha-1}\right)\subset\mathbb{P}$. Therefore, having $p2{n+\alpha}=\omega\left(n2\right)$, we obtain that $\mathcal{E}_n$ includes a subset matched to $T$ for infinitely many values of $n$ and, consequently, $T$ matches infinitely many positions in the sequence of primes.

Summary

We haven't generated a summary for this paper yet.