Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Adversarial Network Perturbations (2002.06495v1)

Published 16 Feb 2020 in cs.CR and cs.LG

Abstract: Deep Neural Networks (DNNs) are commonly used for various traffic analysis problems, such as website fingerprinting and flow correlation, as they outperform traditional (e.g., statistical) techniques by large margins. However, deep neural networks are known to be vulnerable to adversarial examples: adversarial inputs to the model that get labeled incorrectly by the model due to small adversarial perturbations. In this paper, for the first time, we show that an adversary can defeat DNN-based traffic analysis techniques by applying \emph{adversarial perturbations} on the patterns of \emph{live} network traffic.

Citations (6)

Summary

We haven't generated a summary for this paper yet.