Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization-Based MCMC Methods for Nonlinear Hierarchical Statistical Inverse Problems (2002.06358v1)

Published 15 Feb 2020 in stat.CO, cs.NA, math.NA, and stat.ML

Abstract: In many hierarchical inverse problems, not only do we want to estimate high- or infinite-dimensional model parameters in the parameter-to-observable maps, but we also have to estimate hyperparameters that represent critical assumptions in the statistical and mathematical modeling processes. As a joint effect of high-dimensionality, nonlinear dependence, and non-concave structures in the joint posterior posterior distribution over model parameters and hyperparameters, solving inverse problems in the hierarchical Bayesian setting poses a significant computational challenge. In this work, we aim to develop scalable optimization-based Markov chain Monte Carlo (MCMC) methods for solving hierarchical Bayesian inverse problems with nonlinear parameter-to-observable maps and a broader class of hyperparameters. Our algorithmic development is based on the recently developed scalable randomize-then-optimize (RTO) method [4] for exploring the high- or infinite-dimensional model parameter space. By using RTO either as a proposal distribution in a Metropolis-within-Gibbs update or as a biasing distribution in the pseudo-marginal MCMC [2], we are able to design efficient sampling tools for hierarchical Bayesian inversion. In particular, the integration of RTO and the pseudo-marginal MCMC has sampling performance robust to model parameter dimensions. We also extend our methods to nonlinear inverse problems with Poisson-distributed measurements. Numerical examples in PDE-constrained inverse problems and positron emission tomography (PET) are used to demonstrate the performance of our methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.