Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal birational invariants and $\mathbb{A}^1$-homology (2002.05918v2)

Published 14 Feb 2020 in math.AG and math.KT

Abstract: Let $k$ be a field admitting a resolution of singularities. In this paper, we prove that the functor of zeroth $\mathbb{A}1$-homology $\mathbf{H}{\mathbb{A}1}_0$ is universal as a functorial birational invariant of smooth proper $k$-varieties taking values in a category enriched by abelian groups. For a smooth proper $k$-variety $X$, we also prove that the dimension of $\mathbf{H}{\mathbb{A}1}_0(X;\mathbb{Q})(\mathrm{Spec} k)$ coincides with the number of $R$-equivalence classes of $X(k)$. We deduce these results as consequences of the structure theorem that for a smooth proper $k$-variety $X$, the sheaf $\mathbf{H}{\mathbb{A}1}_0(X)$ is the free abelian presheaf generated by the birational $\mathbb{A}1$-connected components $\pi_0{b\mathbb{A}1}(X)$ of Asok-Morel.

Summary

We haven't generated a summary for this paper yet.