Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase reconstruction based on recurrent phase unwrapping with deep neural networks (2002.05832v1)

Published 14 Feb 2020 in eess.AS and cs.SD

Abstract: Phase reconstruction, which estimates phase from a given amplitude spectrogram, is an active research field in acoustical signal processing with many applications including audio synthesis. To take advantage of rich knowledge from data, several studies presented deep neural network (DNN)--based phase reconstruction methods. However, the training of a DNN for phase reconstruction is not an easy task because phase is sensitive to the shift of a waveform. To overcome this problem, we propose a DNN-based two-stage phase reconstruction method. In the proposed method, DNNs estimate phase derivatives instead of phase itself, which allows us to avoid the sensitivity problem. Then, phase is recursively estimated based on the estimated derivatives, which is named recurrent phase unwrapping (RPU). The experimental results confirm that the proposed method outperformed the direct phase estimation by a DNN.

Citations (20)

Summary

We haven't generated a summary for this paper yet.