Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orbital stability vs. scattering in the cubic-quintic Schrodinger equation (2002.05431v3)

Published 13 Feb 2020 in math.AP, math-ph, and math.MP

Abstract: We consider the cubic-quintic nonlinear Schr{\"o}dinger equation in space dimension up to three. The cubic nonlinearity is thereby focusing while the quintic one is defocusing, ensuring global well-posedness of the Cauchy problem in the energy space. The main goal of this paper is to investigate the interplay between dispersion and orbital (in-)stability of solitary waves. In space dimension one, it is already known that all solitons are orbitally stable. In dimension two, we show that if the initial data belong to the conformal space, and have at most the mass of the ground state of the cubic two-dimensional Schr{\"o}dinger equation, then the solution is asymptotically linear. For larger mass, solitary wave solutions exist, and we review several results on their stability. Finally, in dimension three, relying on previous results from other authors, we show that solitons may or may not be orbitally stable.

Summary

We haven't generated a summary for this paper yet.