Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PHOTONAI -- A Python API for Rapid Machine Learning Model Development (2002.05426v4)

Published 13 Feb 2020 in cs.LG, cs.SE, and stat.ML

Abstract: PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development. It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences. It is especially designed to support the iterative model development process and automates the repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the workflow ensures unbiased performance estimates while still allowing the user to fully customize the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline implementation supporting more complex data streams, feature combinations, and algorithm selection. Metrics and results can be conveniently visualized using the PHOTONAI Explorer and predictive models are shareable in a standardized format for further external validation or application. A growing add-on ecosystem allows researchers to offer data modality specific algorithms to the community and enhance machine learning in the areas of the life sciences. Its practical utility is demonstrated on an exemplary medical machine learning problem, achieving a state-of-the-art solution in few lines of code. Source code is publicly available on Github, while examples and documentation can be found at www.photon-ai.com.

Citations (24)

Summary

We haven't generated a summary for this paper yet.