Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A diagonal sweeping domain decomposition method with source transfer for the Helmholtz equation (2002.05327v2)

Published 13 Feb 2020 in math.NA and cs.NA

Abstract: In this paper, we propose and test a novel diagonal sweeping domain decomposition method (DDM) with source transfer for solving the high-frequency Helmholtz equation in $\mathbb{R}n$. In the method the computational domain is partitioned into overlapping checkerboard subdomains for source transfer with the perfectly matched layer (PML) technique, then a set of diagonal sweeps over the subdomains are specially designed to solve the system efficiently. The method improves the additive overlapping DDM (W. Leng and L. Ju, 2019) and the L-sweeps method (M. Taus, et al., 2019) by employing a more efficient subdomain solving order. We show that the method achieves the exact solution of the global PML problem with $2n$ sweeps in the constant medium case. Although the sweeping usually implies sequential subdomain solves, the number of sequential steps required for each sweep in the method is only proportional to the $n$-th root of the number of subdomains when the domain decomposition is quasi-uniform with respect to all directions, thus it is very suitable for parallel computing of the Helmholtz problem with multiple right-hand sides through the pipeline processing. Extensive numerical experiments in two and three dimensions are presented to demonstrate the effectiveness and efficiency of the proposed method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.