Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Reinforcement Learning and Human Social Factors in Climate Change Mitigation (2002.05147v1)

Published 12 Feb 2020 in cs.MA

Abstract: Many complex real-world problems, such as climate change mitigation, are intertwined with human social factors. Climate change mitigation, a social dilemma made difficult by the inherent complexities of human behavior, has an impact at a global scale. We propose applying multi-agent reinforcement learning (MARL) in this setting to develop intelligent agents that can influence the social factors at play in climate change mitigation. There are ethical, practical, and technical challenges that must be addressed when deploying MARL in this way. In this paper, we present these challenges and outline an approach to address them. Understanding how intelligent agents can be used to impact human social factors is important to prevent their abuse and can be beneficial in furthering our knowledge of these complex problems as a whole. The challenges we present are not limited to our specific application but are applicable to broader MARL. Thus, developing MARL for social factors in climate change mitigation helps address general problems hindering MARL's applicability to other real-world problems while also motivating discussion on the social implications of MARL deployment.

Citations (2)

Summary

We haven't generated a summary for this paper yet.