Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics for M-type smoothing splines with non-smooth objective functions (2002.04898v3)

Published 12 Feb 2020 in math.ST and stat.TH

Abstract: M-type smoothing splines are a broad class of spline estimators that include the popular least-squares smoothing spline but also spline estimators that are less susceptible to outlying observations and model-misspecification. However, available asymptotic theory only covers smoothing spline estimators based on smooth objective functions and consequently leaves out frequently used resistant estimators such as quantile and Huber-type smoothing splines. We provide a general treatment in this paper and, assuming only the convexity of the objective function, show that the least-squares (super-)convergence rates can be extended to M-type estimators whose asymptotic properties have not been hitherto described. We further show that auxiliary scale estimates may be handled under significantly weaker assumptions than those found in the literature and we establish optimal rates of convergence for the derivatives, which have not been obtained outside the least-squares framework. A simulation study and a real-data example illustrate the competitive performance of non-smooth M-type splines in relation to the least-squares spline on regular data and their superior performance on data that contain anomalies.

Summary

We haven't generated a summary for this paper yet.