Papers
Topics
Authors
Recent
Search
2000 character limit reached

FastPET: Near Real-Time PET Reconstruction from Histo-Images Using a Neural Network

Published 11 Feb 2020 in eess.IV, cs.LG, and physics.med-ph | (2002.04665v2)

Abstract: Direct reconstruction of positron emission tomography (PET) data using deep neural networks is a growing field of research. Initial results are promising, but often the networks are complex, memory utilization inefficient, produce relatively small 2D image slices (e.g., 128x128), and low count rate reconstructions are of varying quality. This paper proposes FastPET, a novel direct reconstruction convolutional neural network that is architecturally simple, memory space efficient, works for non-trivial 3D image volumes and is capable of processing a wide spectrum of PET data including low-dose and multi-tracer applications. FastPET uniquely operates on a histo-image (i.e., image-space) representation of the raw data enabling it to reconstruct 3D image volumes 67x faster than Ordered subsets Expectation Maximization (OSEM). We detail the FastPET method trained on whole-body and low-dose whole-body data sets and explore qualitative and quantitative aspects of reconstructed images from clinical and phantom studies. Additionally, we explore the application of FastPET on a neurology data set containing multiple different tracers. The results show that not only are the reconstructions very fast, but the images are high quality and lower noise than iterative reconstructions.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.