Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifting Interpretability-Performance Trade-off via Automated Feature Engineering (2002.04267v1)

Published 11 Feb 2020 in cs.LG and stat.ML

Abstract: Complex black-box predictive models may have high performance, but lack of interpretability causes problems like lack of trust, lack of stability, sensitivity to concept drift. On the other hand, achieving satisfactory accuracy of interpretable models require more time-consuming work related to feature engineering. Can we train interpretable and accurate models, without timeless feature engineering? We propose a method that uses elastic black-boxes as surrogate models to create a simpler, less opaque, yet still accurate and interpretable glass-box models. New models are created on newly engineered features extracted with the help of a surrogate model. We supply the analysis by a large-scale benchmark on several tabular data sets from the OpenML database. There are two results 1) extracting information from complex models may improve the performance of linear models, 2) questioning a common myth that complex machine learning models outperform linear models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alicja Gosiewska (9 papers)
  2. Przemyslaw Biecek (42 papers)
Citations (1)