Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability for the Training of Deep Neural Networks and Other Classifiers (2002.04122v3)

Published 10 Feb 2020 in math.AP and cs.LG

Abstract: We examine the stability of loss-minimizing training processes that are used for deep neural networks (DNN) and other classifiers. While a classifier is optimized during training through a so-called loss function, the performance of classifiers is usually evaluated by some measure of accuracy, such as the overall accuracy which quantifies the proportion of objects that are well classified. This leads to the guiding question of stability: does decreasing loss through training always result in increased accuracy? We formalize the notion of stability, and provide examples of instability. Our main result consists of two novel conditions on the classifier which, if either is satisfied, ensure stability of training, that is we derive tight bounds on accuracy as loss decreases. We also derive a sufficient condition for stability on the training set alone, identifying flat portions of the data manifold as potential sources of instability. The latter condition is explicitly verifiable on the training dataset. Our results do not depend on the algorithm used for training, as long as loss decreases with training.

Citations (7)

Summary

We haven't generated a summary for this paper yet.