Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo (2002.04121v3)

Published 10 Feb 2020 in cs.LG, cs.DS, math.OC, stat.CO, and stat.ML

Abstract: We show that the gradient norm $|\nabla f(x)|$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(\kappa d)$ iterations, improving upon the $\tilde{O}(\kappa{1.5}\sqrt{d} + \kappa d)$ runtime of (Dwivedi et. al. '18, Chen et. al. '19) by a factor $(\kappa/d){1/2}$ when the condition number $\kappa$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $\kappa$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.

Citations (36)

Summary

We haven't generated a summary for this paper yet.