Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mapping class group actions from Hopf monoids and ribbon graphs (2002.04089v2)

Published 10 Feb 2020 in math.QA

Abstract: We show that any pivotal Hopf monoid $H$ in a symmetric monoidal category $\mathcal{C}$ gives rise to actions of mapping class groups of oriented surfaces of genus $g \geq 1$ with $n \geq 1$ boundary components. These mapping class group actions are given by group homomorphisms into the group of automorphisms of certain Yetter-Drinfeld modules over $H$. They are associated with edge slides in embedded ribbon graphs that generalise chord slides in chord diagrams. We give a concrete description of these mapping class group actions in terms of generating Dehn twists and defining relations. For the case where $\mathcal{C}$ is finitely complete and cocomplete, we also obtain actions of mapping class groups of closed surfaces by imposing invariance and coinvariance under the Yetter-Drinfeld module structure.

Summary

We haven't generated a summary for this paper yet.