Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Average Precision: Adversarial Example Detection in the Visual Perception of Autonomous Vehicles (2002.03751v2)

Published 25 Jan 2020 in cs.CV and eess.IV

Abstract: Recent works have shown that neural networks are vulnerable to carefully crafted adversarial examples (AE). By adding small perturbations to input images, AEs are able to make the victim model predicts incorrect outputs. Several research work in adversarial machine learning started to focus on the detection of AEs in autonomous driving. However, the existing studies either use preliminary assumption on outputs of detections or ignore the tracking system in the perception pipeline. In this paper, we firstly propose a novel distance metric for practical autonomous driving object detection outputs. Then, we bridge the gap between the current AE detection research and the real-world autonomous systems by providing a temporal detection algorithm, which takes the impact of tracking system into consideration. We perform evaluation on Berkeley Deep Drive (BDD) and CityScapes datasets to show how our approach outperforms existing single-frame-mAP based AE detections by increasing 17.76% accuracy of performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.