Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automating App Review Response Generation (2002.03552v1)

Published 10 Feb 2020 in cs.SE and cs.CL

Abstract: Previous studies showed that replying to a user review usually has a positive effect on the rating that is given by the user to the app. For example, Hassan et al. found that responding to a review increases the chances of a user updating their given rating by up to six times compared to not responding. To alleviate the labor burden in replying to the bulk of user reviews, developers usually adopt a template-based strategy where the templates can express appreciation for using the app or mention the company email address for users to follow up. However, reading a large number of user reviews every day is not an easy task for developers. Thus, there is a need for more automation to help developers respond to user reviews. Addressing the aforementioned need, in this work we propose a novel approach RRGen that automatically generates review responses by learning knowledge relations between reviews and their responses. RRGen explicitly incorporates review attributes, such as user rating and review length, and learns the relations between reviews and corresponding responses in a supervised way from the available training data. Experiments on 58 apps and 309,246 review-response pairs highlight that RRGen outperforms the baselines by at least 67.4% in terms of BLEU-4 (an accuracy measure that is widely used to evaluate dialogue response generation systems). Qualitative analysis also confirms the effectiveness of RRGen in generating relevant and accurate responses.

Citations (33)

Summary

We haven't generated a summary for this paper yet.