2000 character limit reached
Arithmetic special cycles and Jacobi forms (2002.03499v1)
Published 10 Feb 2020 in math.NT and math.AG
Abstract: We consider families of special cycles, as introduced by Kudla, on Shimura varieties attached to anisotropic quadratic spaces over totally real fields. By augmenting these cycles with Green currents, we obtain classes in the arithmetic Chow groups of the canonical models of these Shimura varieties (viewed as arithmetic varieties over their reflex fields). The main result of this paper asserts that generating series built from these cycles can be identified with the Fourier expansions of non-holomorphic Hilbert-Jacobi modular forms. This result provides evidence for an arithmetic analogue of Kudla's conjecture relating these cycles to Siegel modular forms.