Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical generalizations of the Prime Number Theorem and disjointness of additive and multiplicative semigroup actions (2002.03498v3)

Published 10 Feb 2020 in math.DS and math.NT

Abstract: We establish two ergodic theorems which have among their corollaries numerous classical results from multiplicative number theory, including the Prime Number Theorem, a theorem of Pillai-Selberg, a theorem of Erd\H{o}s-Delange, the mean value theorem of Wirsing, and special cases of the mean value theorem of Hal\'asz. By building on the ideas behind our ergodic results, we recast Sarnak's M\"obius disjointness conjecture in a new dynamical framework. This naturally leads to an extension of Sarnak's conjecture which focuses on the disjointness of additive and multiplicative semigroup actions. We substantiate this extension by providing proofs of several special cases.

Summary

We haven't generated a summary for this paper yet.