Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Companions for Black-Box Models (2002.03494v2)

Published 10 Feb 2020 in stat.ML and cs.LG

Abstract: We present an interpretable companion model for any pre-trained black-box classifiers. The idea is that for any input, a user can decide to either receive a prediction from the black-box model, with high accuracy but no explanations, or employ a companion rule to obtain an interpretable prediction with slightly lower accuracy. The companion model is trained from data and the predictions of the black-box model, with the objective combining area under the transparency--accuracy curve and model complexity. Our model provides flexible choices for practitioners who face the dilemma of choosing between always using interpretable models and always using black-box models for a predictive task, so users can, for any given input, take a step back to resort to an interpretable prediction if they find the predictive performance satisfying, or stick to the black-box model if the rules are unsatisfying. To show the value of companion models, we design a human evaluation on more than a hundred people to investigate the tolerable accuracy loss to gain interpretability for humans.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Danqing Pan (1 paper)
  2. Tong Wang (144 papers)
  3. Satoshi Hara (23 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.