Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Burgess bounds for short character sums evaluated at forms II: the mixed case (2002.03435v2)

Published 9 Feb 2020 in math.NT

Abstract: This work proves a Burgess bound for short mixed character sums in $n$ dimensions. The non-principal multiplicative character of prime conductor $q$ may be evaluated at any "admissible" form, and the additive character may be evaluated at any real-valued polynomial. The resulting upper bound for the mixed character sum is nontrivial when the length of the sum is at least $q{\beta}$ with $\beta> 1/2 - 1/(2(n+1))$ in each coordinate. This work capitalizes on the recent stratification of multiplicative character sums due to Xu, and the resolution of the Vinogradov Mean Value Theorem in arbitrary dimensions.

Summary

We haven't generated a summary for this paper yet.